
Autonomous Time-based 
Precision Global Positioning  
 
M. Böhm 
Telphykas, D-70499 Stuttgart, Solitudestr. 389, 
Germany 
                                                                              
Tel.:  49.711.831131 
Fax:  49.711.831124 
e-mail: Dr.Boehm-Telphykas@t-online.de 
 
Abstract 
 
Three-dimensional time-based global positioning by exclu-
sive autonomous precision time measurements is achieved 
by using astronomical data and a precision clock. The clock 
is providing the continuously changing universal time tx 
(UT), while fixed points in time ti provide "inertial" 
references. A local position coordinate, say meridian, is 
determined  by using the equation L = 360° (tx - ti )/Ti , with 
Ti being 24 hours, i.e. the time of a daily rotation of earth.  
 
Introduction  
 
Measurement of physical quantities generally re-
quires a reference quantity  and a quantity to be 
measured of the same kind, for instance two 
distances, two angles, two forces, two frequencies or 
two points in time. For the autonomous, or self-
contained, measurement of two quantities, take 
angles like geographic longitudes, the reference 
quantity is to be available at the same location as the 
quantity to be measured, and it must be independent 
of the local position. Therefore it has to be ensured 
that any position change results in a change of the 
quantity to be measured, but does not effect the 
reference quantity. Inertially viewed this quantity 
must be independent of local position, while it 
changes apparently if the local position is used as the 
reference. A positioning result, however, is not 
influenced by the choice of the respective reference 
frame. 
  
Autonomous positioning, i.e. positioning without any 
link to the "outside" world, is at present available 
only via inertial platforms comprising gyros and 
accelerometers Such platforms provide reference 
frames calibrated at known positions, while position 
changes with respect to these positions are measured 
via three-axis accelerations and twice the integration 
of them over time1.   
 
Another well-known example for dynamic effects is 
the pendulum of Foucault, against which earth rotates 
at 15°/h. The local observer may interprete this 
rotation as that of the oscillation plane of the 
pendulum against earth considered to be fixed, i.e. 
not rotating. The main disadvantage of such dynamic 
approaches, i.e. those using forces, are the many error 
sources, which cause drift errors growing with 
mission duration. This results in quite a technical 

effort to limit these errors, while accuracies available 
still cannot match those achievable via kinematic 
approaches like GPS. 
 
GPS is based upon differential  travel time mea-
surements of signals transmitted from satellites, the 
positions of which are exactly known at any time 
and at any receiver via the received signals. GPS 
signals for public use do not provide the highest 
possible accuracies which are available to military 
users only. 
 
Higher accuracies for civil applications are provided 
by utilization of DGPS, where a ground station 
transmits corrective signals which enable a civil 
GPS receiver to reduce the errors of its determined 
GPS position fix 2,3,4. 
 
For autonomous precision positioning utilization of 
time signals, which are the most accurate means 
available in physics, is a must13. Time signals for 
reference and measurement also ensure GPS 
accuracy, although not self-contained or autono-
mously. 
 
The objective of this paper  is to offer a new time-
based kinematic approach for autonomous global 
positioning without any radio signals and without 
any gyros and accelerometers, while providing equal 
and better accuracies than the best GPS or - perhaps 
in the future - Galileo system can provide for, at a 
fraction of the expenses required for satellite-based 
positioning systems. Main issue besides unmatch-
able accuracy is always the autonomy of the 
positioning device, i.e. reference and measuring 
signals are to be available at the same local position. 
Time-based autonomous positioning, which does not 
require - exept for calibration at a known position 
before a mission begins - any external means, is 
exclusively utilizing differences in time between 
known fixed points in time and a local precision 
clock. However, it has to be recognized that the 
positioning results achieved autonomously a priori 
do not involve inertial attitude or vectorial 
information and may be compared in this respect 
with GPS fixes which also lack such kind of 
information. In addition, it has to be kept in mind, 
that also precision clocks are subject to drift12. 
However, the drift error effect can be easily 
overcome, as will be outlined later. 
  
Physical  Background 
 
Just the time signal (UT) of a clock operated 
autonomously cannot indicate a position. Classic 
positioning on ships therefore required, in addition 
to UT, the momentaneous position of the sun, i.e. an 
inertial reference to determine local time (LT), i.e. 
the local meridian. 
 
An autonomous positioning approach can substitute 
the external - inertial - sun by an internal sun, which 
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is, however, no more inertial. The position of this 
internal sun can be defined with respect to any 
surface point on earth as a specific time difference, 
which changes with the change of position of this 
surface point. Utilization of an internal sun via given 
known points in local time, accurately related to 
known points on earth as references, and the variable 
local time of the own, still unknown position makes it 
possible, by means of the local precision clock, to 
continuously determine the local position via local 
measurements of time differences. This approach 
applies to the determination of the local meridian, the 
local parallel, and the local altitude, as will be 
discussed in more detail later. 
 
At sub-relativistic velocities the two terms universal 
time (UT) and local time (LT), or local angle 
(longitude, latitude), are linked by the third term 
angular velocity ω. For mathematical treatment of 
different points on earth consideration of the 
relativity of simultaneity is sufficient. Local time is 
an analogy to space time, known from General 
Relativity. Its unit is the second, if position is 
determined by angles as fractions of 2π, i.e. without 
metric units. 
 
Exclusive utilization of time for autonomous global 
positioning in combination with known positions, 
lines, or planes recommends a careful consideration 
of what is meant by the term "time". There are many 
publications on this item 5,6,7,8,9,10. Of major 
importance is the term relativity of simultaneity. Also 
consideration of the Sagnac effect is helpful. In 
general, it has to be analyzed how different terms like 
time, clock time, local time, differential time, space 
time etc. apply to the task of autonomous positioning 
on earth, and how they can be utilized. 
 
Definitions: 
 
Time: Basic term to describe matter motion  
Clock time: Point in time 
Point in time: Momentaneous clock display 
Differential time: Difference between two points  
                             in time  
Space time: Desciption term for events 
Local time: point in time of a surface point on earth,  
                   referred to sun position    
Solar time: Based upon a day with 86400 s 
Siderial time: Unit is siderial day between two upper  
                       culmination points of the spring point V  
Time equation: True solar time minus mean solar  
                          time    
Relativity of simultaneity:  

ct2 = (ct1 - (v/c)x1) (1- v2/c2)-1/2 

 

For autonomous positioning on earth  the relativistic 
term of the equation above can be neglected since  
v2/c2 ≈ 10-8. Thus ct2 = ct1 - (v/c)x1. The approach 
described in this paper utilizes time and position 

differences measured and computed autonomously 
within a moving object.  
 
It has to be checked which differences result when 
the measurements are referred to the resting inertial 
frame instead of to the moving object, and vice 
versa. 
 
P. Mittelstaedt3 writes: "If one considers two events 
E1(x1,t1) and E2(x2,t2), then their space-time (four-
dimensional) distance   ∆(x,t)2 = c2(t2-t1)2 - (x2-x1)2  
is invariant towards Lorentz transformations and 
therefore equal within any inertial frame, the time 
difference ∆t = t2 - t1 itself, however, is not Lorentz-
invariant". From this, under certain conditions, the 
relativity of simultaneity results. It governs the 
synchronisation of clocks within an inertial system 
via electromagnetic signals from the spatial origin 
according to the equation  t = (∆s/c) + t0 , or  t-t0 = 
∆s/c 8. ∆s is the spatial Euklidian distance to the 
spatial origin, t0 is the point in time of transmission 
of a synchronising signal, and c is the velocity of 
light. It becomes apparent that this equation also 
results from the application of the Sagnac effect to 
the same situation. 
 
For the Sagnac effect can be formally applied to the 
rotating earth which transports any fixed electronic 
clock with its known angular velocity. The well 
known formula for this effect is ∆Φ = (4A/λr)β = 
(4A/λc)ω. With ∆Φ = ω∆t it can be derived for earth 
- the angular velocity ω of which is practically 
constant and exactly known - ∆t = (r/c) ∆Φ. The 
phase ∆Φ of any point on a parallel is, in addition, 
ω∆tLT = ∆Φ. This leads to ∆t⋅c/r =∆t⋅Ω = ω ∆tLT.  
The time shift ∆t is then the fraction ω/Ω of the local 
time difference ∆tLT. The factor ω/Ω is about 1,55. 
10-6. That means travel time for a full circulation of 
a signal around earth from and to its origin is 
0,133673 seconds, compared to the 24 hours of a 
daily rotation of earth. 
 
These considerations result in a new approach for 
autonomous time-based positioning on the rotating 
earth. Fixed points on earth could be determined - if 
their angular velocities ωi were known - by simple 
differential time measurements. For objects moving 
relative to earth or selected points on it, however, the 
angular velocity is not known. In these cases one has 
to use a virtual angular velocity Ω = c/r =47 s- 1, 
which results from the diameter of earth 2r  and light 
velocity c. There is no signal which can travel 
around earth faster than about 133 milliseconds. 
Compared to the real angular velocity of the daily 
earth rotation which is ω = 7,272.10-5 s-1 this means 
an increase of angular velocity by the factor of about 
648 000. The meaning of this factor will be outlined 
later. Working with the virtual angular velocity Ω is 
always required for autonomous time-based 
positioning when the motion of an object with 
respect to earth surface changes the inertial angular 
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velocity of the object from ω of earth to ω±∆ω, with  
∆ω a priori unknown. One then has to continuously 
utilize the macroscopic Sagnac effect by relying upon 
the virtual angular velocity Ω. Of course, this 
approach can also be used for positioning of fixed 
objects. The introduction of r, however, provides an 
additional parameter for the respective calculations, 
which have to consider the variations of r. 
  
The space-time distance ∆(x,t) between two events 
can be expressed, under certain conditions, by time 
differences, if one eliminates the constant factors like 
light velocity c for the spatial terms. It is then 
possible to determine a spatial coordinate by the local 
measurement of points in time (UT), while other 
required points in time can be taken from a local data 
bank, which contains well-kown astronomical data of 
the orbits of all points on earth in form of 
rectascension and declination values. 
 
When determining the local meridian of an object P, 
a reference point P0 on a reference meridian which 
has the angle Φx referred to the position of the sun or 
its local time Φx/ω with respect to the line sun-earth 
center  (S-M) at any UT point in time tx , is always 
exactly known as a means to determine the still 
unknown local meridian of object P. The local 
meridian L (ϑ) results, if  P0 is defined as a point on 
the Greenwich meridan (0°). Astronomical data of 
earth on its orbit are needed and are available as 
published tables11 of rectascension and declination 
values.  

 
Decisive for the feasibility of the described approach 
is the utilization of accurate table values in 
combination with a precision clock, which should not 
only provide accurate universal time, but also high 
phase stability and little drift. In addition, for each 
mission the system is to be calibrated at a known 
position, for instance a depart point with also known 
altitude.  Another key element is a motion line which 
represents the angular velocity Ω and directly 
connects both the unknown local point P und the 
reference point P0 .  

Measuring Principles 
 
The proposed positioning method is described using 
twelve figures. In fig.1 the basic situation for 
autonomous time-based positioning on the rotating 
earth is outlined. There is sketched a parallel 1 with 

the  
 
Greenwich meridian 0° at 20.00 hours local time and 
the two meridians 120° with the local time 04.00 
hours and 240° with the local time 12.00 hours. 
Universal time tx be 10.30 hours. For this 
configuration there are - sequentially - always 
changing  points in universal time txi which can be 
taken from available  tables11.  Clock 2 is located at 
the Greenwich meridian, with tx = 10.30 hours, clock 
3 is located at the meridian 120°, with the same 
point in UT time 10.30 hours, however with a 
different local time, namely shifted by 8 hours to 
04.00 hours. Here it becomes clear that tx is valid for 
all meridians on earth, while local time is specific 
for each meridian. It is also apparent that local time 
and local angle are quantities with identical 
information concerning position. They are linked by 
the equation ∆tLT ω = ΦL. On earth eight hours 
difference in local time mean an angle difference of 
120°. If now the meridian P of clock 3 is unknown 
and only tx (10.30) is available, then this is not 
sufficient for positioning, but additionally local time 
has to be introduced. Inertially viewed,  the tables11 

already mentioned contain the local time for every 
meridian at every point in universal time. Locally, 
however, this does not help directly, and initially 
one does not know at P that the local meridian is 
120°. If one wants to determine the local meridian L 
(or ϑ) then two quantities are required locally, 
namely one which does not vary with position, i.e. a 
reference, and another one which is correctly related 
to the local time of P. Dynamic methods, operating 
with gyros and accelerometers, offer these 
informations. Purely kinematic autonomous 
methods, however, cause concerns since it is argued 
that any position change from P0 to P by the angle ϑ 
does change the reference time signal in the same 
way as the measurement signal, and that the angle ϑ 

Fig. 2   Inertial and Local Situation
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of P, which is to be measured with respect to P0, is 
thus eliminated. These concerns referring to 
traditional considerations are understandable and 
principally justified. However, they do not apply to 
the time-based positioning method described in this 
paper, since this approach utilizes fixed points tai in 
universal time, which define certain reference 
meridians with known properties like 00.00 or 12.00 
hours local time, and which are neither time- nor 
position-dependent, i.e. valid for any unknown point 
P. 
 
 

During a measurement the time difference between 
the fixed reference point in time ta (S) and the 
continuously changing point in time tx (UT) of the 
local position (P) is related to the real position of the 
sun (S). The time difference measured between a 
fixed point in time ta and tx  is  a measure for the 
angular distance of the local meridian to the inertial 
reference point, the sun. The local time tLT = ΦL/ω of 
every point on earth surface follows an exactly 
definable specific function of time tUT. The 
differences in local time of these practically linear 
functions can be interpreted as phase differences with 
respect to the inertial reference, the line sun-earth (S-
M). The task is to determine a specific phase 
difference between P0 and P. 
 
Traditional Considerations 
 
The sketches in fig. 2 indicate the equator as their 
horizontal center lines, while the respective left 
ordinates are the reference meridians defined by ta. 
The sketches show both principal ways to describe 
local times, namely as inertial (1) or local  (2) 
situation. One may use either a simulated quasi-
inertial display, for which a selected fixed point like 
the sun is shown fixed also on the display (1), while  
the simulated earth rotates. Or one choses a fixed 
earth, with the sun rotating around it (2). If one 
assumes (in 1) that the (internal) sun is the fixed 
reference then points P0, PE  and P move time-
dependent with respect to the fixed point in time ta, 
which defines a reference meridian pointing to the 

sun. Or one selects (in 2) a point of the respective 
three ones as a (local) reference, against which, if 
this point is moving, the sun seems to move. If there 
is an observer at point P, the reference point P0 at the 
point in time ta  moves, together with the sun, to a 
different place than if the observer would be at point 
PE. The spatial transition from P to PE  would mean a 
position transformation, which would have to 
include a respective transformation of local time. 

 
Staying at one of the moving points, the reference 
point in time ta can be interpreted as inertial point in 
the time domain which defines the total local time 
domain. If locally observed from P, this local time 
domain - comprising 24 hours or 86400 seconds - 
would pass this point because of the motion of P 
with earth. The respective inertial position change of 
P can be described by a respective change of time or 
time difference. Of course, there is no true vectorial 
inertial reference, as will be outlined later. However, 
the angle difference between P and the selected 
reference, sun or Greenwhich meridian, exactly fits. 
 
In fig. 3 time dependence of the different local 
times of points P0, P1, P2 and P3 is shown. The 
local times are expressed as local angles. The four 
points may be located on the same parallels or on 
different ones. P0 be the 0°-meridian, which at the 
point in time ta exactly points to the sun (12.00). 
During 24 hours, the  period TL, this meridian rotates 
by the angle 2π, which is covered at the point in 
time tb = ta +TL. The meridians of the three other 
points P1, P2 und P3  also cover 2π during TL = tb-ta.  
With respect to the sun, and to P0, however, these 
points have the different angle components ϑ1, ϑ2, 
and ϑ3, which are identical with the respective 
inertial position angles. If both a local reference 
signal as well as the measuring signal would contain 
the respective ϑ, then this quasi-dc component 
would be eliminated and one could not measure 
locally and autonomously any change of position. A 
position change can only be measured if the local 
reference signal would not contain any position-
dependent  "dc" angle component.  
 

 

Fig. 3  Motion Lines of Points on Earth
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The motion lines of the four points are parallel to 
each other, and they intersect with the UT axis at 
specific points in time. For P0 the intersection point in 
time is ta.  
 
The motion lines, the slope of which corresponds to 
the angular velocity ω of the daily earth rotation, can 
be considered as inertial motion paths of  the points 
and comprise the elements universal time and local 
time. A clock in Berlin and another one in Bonn 

 
 
show identical universal times, but their locations 
correlate to different local times, of course. The 
respective local times are usually not available via 
these clocks, though. 
 
New Approach 
 
Fig.4 shows the general relation of time and meridian 
or local time of three selected fixed points on earth, 
the reference point P0, the calibration point PE, and 
the local position P. The figure illustrates the inertial 
angular change of the three points as a function of 
time (UT). On earth this is determined by the angular 
velocity ω of the daily rotation of earth which is 
practically constant.  
 
The rotation angle is given by the equation ∆Φ = 
ω∆t.  This equation determines the relation between  
time and inertial position, i.e. local time, which then 
is defined by  Φ/ω = tLT. This means, that the 
universal time difference ∆tUT  and the local time 
difference ∆tLT are equal, and also that the angular 
change of any fixed point on earth over time leads to 
the constant angular velocity ω. However, if one 
locally connects the unknown point P with a 
reference point P0 then the angular velocity of this 
motion line is not known.That is also valid for points 
moving relative to earth surface. One has to utilize 
then, in analogy to the "microscopic" Sagnac effect, 
the "macroscopic" Sagnac effect with the ultimate 
angular velocity Ω = c/r. That was already discussed 

in the introduction section. How the macroscopic 
Sagnac effect is applied to the determination of local 
meridians, is dealt with using figures 5 and 6. The 
same basic procedure is then applied to the 
autonomous determination of latitude and altitude. 
 
In fig.5 the relation between universal time tUT and 
local time tLT is explained in more detail. This figure 
shows the fundamental procedure to determine the 
unknown local meridian of any fixed point P on 
earth. In order to make this "inertial" illustration 
possible the meridian of the reference point P0 at the 
point in time ta has to be known. P0 changes its 
inertial position with respect to the inertial reference 
point sun in an exactly known manner as a function 
of time on the sketched motion line ω. At the point 
in time ta  the real P0 meridian points exactly to the 
sun, and P0 at the display, quasi as a sun substitute, 
may be considered to be an internal sun. In an 
inertial representation both points P0 and P - if they 
are fixed points - change their inertial positions as 
exactly known functions of time, since they must 
move with the angular velocity of the daily earth 
rotation and with respect to the inertial reference 
point in time ta.  However, the initial location of P at 
ta is not known. Therefore only the inertial meridian 
of P0 is defined exactly at every point in time. The 
spatial attitude of any display does not matter at all, 
since the relative positions are only functions of 
time.  This is valid also, if the local observer at P 
does not know the local meridian. The time-based 
determination of a coordinate like a meridian can be 
based upon the measurement of the time difference  

 
∆t = (tx - ta), provided the motion line ω* is used 
which directly connects P and P0. ∆t⋅ω* delivers the 
angular distance between the reference point in time 
(the internal sun) and the local meridian at any local 
point in time. For a correct utilization of this basic 
configuration the following procedure has to be 
considered. Each point on earth moves on its own 
individual inertial path. All motion paths are parallel 
to each other.  If one keeps the fixed (inertial) time 
frame ta and ta +T, then the meridian of P0 changes 
its position within this time frame or window 
continuously, while the meridian of P with respect to 

Fig. 5   Relation between Time and Local Time  2

0

tx

tUT

24

-T

P‘

tLT

S

+T

ta

tb

P
P0

24

ta- T

ta+ T

-T +T

ω*

- ω*

- tx

ω

ω

Fig. 6   Principle of Positioning of any Object on Earth

0 00

P‘

tx
ta* +TL* P

-Ω

ω

- ω

Ω

ta*
-tx

ω‘

- ω‘
24 00

ta*-TL*tUT

tLT

P0*

tR= 0 T

LP = 360 (tx - ta*)/TL*



 6 

P0 does not change. The total meridan collective 
moves through this fixed time window once within T 
(24 hours). Such observation cannot be influenced by 
the attitude of the used display. But, of course, such a 
display has no true inertial meaning (which applies to 
any GPS measurement result, too). 
 
The continuous measurement of the unknown local 
meridian of P via the clock at this position principally 
is achieved as follows. 
  
With P0, the meridian of which - at the point in time 
ta - has the local time 12.00 hours and points exactly 
to the sun, one defines a reference coordinate system, 
the ordinate of which is the universal time axis and 
the horizontal axis of which is the local time axis. 
The inertial motion path ω of P0 does not meet P, but 
the motion path ω* does and connects P0 and P. If 
one reflects P at the ta-axis, one gets point P' which is 
mirror-symmetric  to the ta-axis. P' sits on a motion 
line of P0 which corresponds to -ω*. The local 
meridian of P  basically results from the equation 
 L = 360° (tx - ta)/T provided one knows  ω*. 
 
Physically one may interprete this procedure as an 
expanded Sagnac approach. Starting at ta (UT) and 
12.00 (LT) from P0 (internal sun), the stable 
electronic oscillation within a clock is transported in 
reality (counterclockwise) to P, which  at the moment 
of  measurement tx (UT) has the local time tx - 12.00, 
and additionally a virtual electronic oscillation is 
transported clockwise to point P'. The time distance 
(difference) between these two points is twice the 
time difference tx-ta, and unambiguously corresponds 
to the local meridian of P. Of course, the virtual point 
P' is not a must for the procedure. But it helps to 
reduce clock drift.  
 
Since the angular velocity ω* of P is not known, the 
procedure sketched in fig. 5 has to be modified. Fig. 
6 shows it for fixed as well as for moving objects for 
meridian measurement. The essential difference to 
the procedure shown in fig. 5 is the introduction of 
the known angular velocity Ω = c/r. It is required, 
since the inertial angular velocity ω*= ω+∆ω of an 
object on earth with respect to an inertial reference 
point is not known a priori. ∆ω can have any value, 
except one which is - because of the relativity of 
simultanenity - beyond c/r. 
 
If one therefore uses this limit of angular velocities 
on earth, then one don't need to know ω* = ω+∆ω. 
The price to pay is r, the radius of earth which is a 
variable term and introduces an additional difficulty 
in autonomous time-based positioning. 

 
Neglecting this, however, determination of the local 
meridian of a resting or moving P on earth is 
achieved as follows. 
 

If point P moves relative to earth, then there are 
various motion lines, which means that for identical 
points in universal time tx there are undefined points 
in local time for P, i.e. local meridians. The direct 
utilization of ∆t = tx - ta would lead to an error, since 
the rotation period of P changes from T (86400 
seconds) to T', which may be shorter or longer than 
T, coresponding to the velocity vector of P relative 
to earth surface. 
 
In order to avoid this effect, the real but unknown 
angular velocity ω* of P with respect to P0 is 
substituted by the ultimate angular velocity Ω = c/r, 
as discussed already before. Since for both 
approaches - Sagnac effect and relativity of 
simultanenity - the same local meridan must result it 
follows Φx = (tx - ta) ω' = (tx - ta*) Ω.   In this 
equation ta* can be derived from ta, as will be 
discussed later. The time difference   ∆t* = tx - ta*  
leads to the looked-for local meridian in connection 
with the universal time period T* by multiplication 
with Ω as follows.  
 
Beginning at the - unknown -  local position P one 
draws a motion line Ω with known slope  at every 
point in time tx  until it intersects with the  ta* - axis. 
This  intersection corresponds to P0, or the internal 
sun. The ta* - axis is derived from the ta-axis of fig. 5 
by applying the factor ω/Ω to the time difference  tx 
- ta, measured continuously. That means one derives 
ta* = ( tx - ta) ω/Ω and thus can divide (ta + T) - ta, 
i.e. T, into Ω/ω  (≈ 648 000 ) ranges of T*. ta* is that 
constant local time axis, which comes closest to the 
local time axis defined by  ta if one starts at tx. 
 
Once P0* is determined, one can draw also the 
motion line -Ω and define point P' which is reflected 
at the ta*-axis. The distance P-P' , which corresponds 
to the time difference  2(tx-ta*), unambiguoulsy 
determines the local meridian if  P0 is defined as a 
point located on the Greenwich meridian, which 
means that  ta has to be that point in time,  at which 
the Greenwich meridian exactly points to the sun. 
The local meridian of P is given by L = K (tx - 
ta*)/TL*. K is a known factor, which determines the 
measuring range, i.e.  360° or a derivation from this 
if one uses "eastern longitude"  or "longitude west".    
 
Time resolution of a 24 h period, i.e. one full daily 
rotation of earth, also determines the achievable 
angle or local time resolution. If one divides this full 
rotation cycle or period into 106  parts, then one part 
has the duration of  86,4  ms. During this time any 
point at the equator moves tangentially with respect 
to the earth center by about 40 m. There is no need 
to also consider orbit velocity.  
 
Within the local time period TLT one has the 
assumed 106 time intervals of the universal time 
range as also local time or angle segments. One 
angle segment corresponds to 2π/106 = 1,59.10-5 or 
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20,63''.  Since Ω is employed, which has a period 
duration of T* = 0,133 s, the assumed resolution of 
106 causes clock impulse intervals of  0,133⋅10-6 s. 
This corresponds to a clock frequency of about 7 
Mhz. Since the present clock rate state of art is three 
orders of magnitude higher, resolution can be 

increased respectively, which means to go from the 
assumed 40 m (106) resolution  to  0,04 m (109). 
Potential resolution limits are not imposed by the 
achievable clock rate, but by the drift rate of the 
applied clock. Also atomic clocks are subject to 
drift12. It is, however, possible to neutralize any clock 
drift by employing measuring time intervals of more 
than one period, for instance by using instead of one 
daily rotation a yearly rotation which means 365 
daily rotations.  
 
Points in time as well as angles usually are already 
coded as digital information. While local time is 
periodic with 24 hours, universal time changes 
unidirectionally. Since ta and the meridian pointing to 
the sun at this point in time are very acurately known, 
as well as ta ± nT (n may be any integer), and also tx 
can be measured with utmost accuracy, the local 
meridian derived from these accurate terms - which 
practically can't be distorted - is also highly accurate. 
 
The reference point in time ta  - rectascension -  is very 
accurately known from literature11. Despite being an 
inertial angle, it is given as an accurate time for every 
day of a year. The values of all meridians could be 
stored for all days of a year autonomously, and be 
used as needed for positioning computations. 
 
The point in time ta* is a numerical value for an 
inertial reference. But as a number it only defines 
which angle Φx a chosen reference meridian like that 
of Greewich has at any point in time tx from the 
selected inertial reference (sun). Locally there is no 
true, vectorial inertial information connected to these 
numbers. The local meridian of P is correctly 
determined, but the inertial attidude of this meridian 

in space remains unknown from only this 
information. 
 
The option to shift  the fixed point in time ta* by n 
periods - with n being any integer, for instance 365 
for going to the yearly instead of to the daily rotation 
of earth - opens two ways to improved performance. 
The first one leads to the reduction of clock rate, and 
the second one allows for neutralizing drift rates of 
clocks, which means that simpler clocks can 
substitute high performance atomic clocks. 
 
When using the numerical time for one yearly earth 
rotation, the required clock rate for the chosen  
position resolution can be reduced by the factor 365. 
And the position error  caused by the clock drift is 
reduced then by the same factor. 
 
Latitude and Altitude 
 
Fig. 7 shows principally how latitude and altitude 
can be measured autonomously. Fg. 7a shows time 
range 1 and local time range 2, which is drawn 
thicker. At a point in time tx  (UT) the point P with 
its locally unknown position is assumed to be 
located at a southern parallel of about 10°.  For 
measurement the local view is used and compared 
with the simulated  inertial view, similarly to what 
was described already for meridian measurement 
using figures 5 and 6. Also for latitude measurement 
an inertial reference point PB  has to be introduced, 
which is determined by a fixed point in time tc. The 
difference in time tx - tc = ∆tB  corresponds to the 
parallel of P within the latitude range of ± 90° and is 
given by B = ±90° (∆tB/TB). For defining the inertial 
reference point PB declination can be used which is 
available very accurately from literature11 and which 
changes daily during the yearly orbit of earth around 
the sun. 
 
Fig. 7b illustrates the principle of the autonomous 
time-based measurement of altitude. As inertial 
reference sea level NN is chosen, although the real 
sea level locally changes as a function of tides and 
weather.  It is possible to use a special internal 
scanning frequency for the altitude range 6 from NN 
to H. Because of moving objects like aircraft again it 
is required to introduce the highest possible virtual 
scanning velocity c/(H-NN) = Ω* or Ω* = c/H*. The 
altitude of P then can be derived, in analogy to 
longitude and latitude determination, from h = 
H*(tx-te)/TH, as is discussed in more detail referring 
to fig. 8. 
 
This additional discussion is useful since it discloses 
that autonomous time-based determination of a 
quantity does not require to consider earth rotation. 
And it clarifies that, like altitude, any distance to 
selected time-based reference points can be 
measured autonomously. It should be emphasized 
again, however, that the true inertial attitude of the 

Fig. 7   Principle of autonomous Measurement of Latitude
and Altitude
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altitude range H* cannot be taken from the scalar 
measurement results. One would have to get the 
plumb vector from a different sensor. 
 
Fig. 8 explains hwo the time-based autonomous 
altitude determination of  P within a linear range H* 
is achieved. 1 is the time range, H* the altitude range 
from sea level NN to maximum altitude H, tc the 
reference point in time when the scanning frequency 
- which simulates a relative motion between an 
inertial reference system and the actual location of P - 
starts at sea level (NN). 

 
It is assumed that the reference level PN periodically 
scans the altitude range H* as a function of universal 
time tUT  with the angular velocity Ω** = c/H*. Thus 
a common virtual motion line Ω** is allocated to P0 
and P. 

 
 
At P one measures universal time tx and thus has the 
time difference tx - tN at every point in universal 
time. Because of the selected angular velocity this 
time difference is directly proportional to the altitude 
of P. It helps in understanding to consider this 
approach as a kind of autonomous on-way-DME 
where a reference point in time tN is allocated to the 
"inertial" sea level. If the altitude of P remains 

unchanged, then also the respective time difference 
as a phase difference between the periodic 
reference signal with the period TH and universal 
time tx remains unchanged. Relativity of 
simultaneity makes this approach possible. 
 
Once again it is emphasized that the measured 
altitude has no vectorial character. 
 

 
Measurement of altitude h within the altitude range 
H* is achieved as follows. Beginning at sea level 
which is marked with the fixed reference point in 
time tN PN scans virtually the altitude range H* 
periodically with the angular velocity Ω* = c/H*. 
 
During the scan of  H* the reference signal PB (NN) 
coincides at the point in time tx with  the local point 
P = H* (tx - tN) /TH.  If P is at the low end of H*, i.e. 
at sea level and at the start of a scan  period TH  then 
tx equals tN, i.e. tx - tN = 0, and therefore P = NN. 
One could say that the phase difference of P referred 
to sea level is zero. If P is located in the middle of 
H*, then tx - tN  = TH/2 and therefore P = H*/2. One 
could say, the phase difference between P and NN is 
π. If P is at the high end of H*  then tx - tN = TH , and 
thus P = H. The phase difference between P and NN 
is then 2π. 
 
This procedure is feasible since the position of P 
within H* can be changed only at the expense of 
local time, i.e. differential phase, while the reference 
point in time tN is not effected by any positional 
change of P. Therefore a change of  P altitude results 
in a change of local time and thus a change of phase 
between P and sea level which allows for measuring 
such altitude change. Graphically that was explained 
already in figures 5 and 6 for meridian measure-
ment.  
 
The result of these explanations are the given 
equations which allow for continuous rapid 
computations of the respective 3D-position of P at 
any point in time. The autonomous altitude 
measurement (and any other distance measurement) 

Fig. 8  Autonomous Measurement of Altitude h
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can be achieved locally via a precise clock 3 and a 
computer 4.   
                  
Autonomous v. Inertial 
 
Fig. 9 illustrates how the three-dimensional positio-
ning results in time differences 2 (L), 3 (B) and 4 (h) 
can be interpreted, which are achieved by only 
measuring them at a point in time tx. Fig. 9a shows a 
pseudo spatial sketch with the time intervals Ti 
arranged orthogonally to each other for longitude, 
latitude and altitude measurements. These time 
intervals are beginning with specific fixed points in 
universal time tL for longitude, tB for latitude and tN 
for altitude, and end after the respective periods of 
time TL, TB and TH. The measured position is 
determined by the local point in time tx delivered by 
the local clock. This clock impulse divides the 
periods Ti of the three coordinate ranges (2π, ±π/2, 
H) by a ratio corresponding to the respective coor-
dinates of P. The orthogonal arrangement of the 
coordinates is arbitrary, since the numerical values of 
the coordinates don't involve any vectorial infor-
mation. Therefore they can be arranged, as shown in 
fig. 9b, also as parallel line segments. In practical 
applications the coordinates may usually not be 
displayed directly, but processed suitably within a 
more complex master control system. 
 

 
In fig. 10 it is shown how two positioning results, 
longitude and latitude, can be displayed on an x-y-
display. 
 
The y-axis 3 shows the latitude of  P, the x-axis 2 the 
longitude of it. P is chosen as the fixed frame while 
equator and Greewich meridian move with respect to 
it although in reality P moves. Of course, the 
available data allow for dislaying a fixed earth with P 
moving  on it as well.  

 
Fig. 11 shows the difference between autonomous 
and inertial measurements.  I is the inertial system 
with sun S, point P on the real parallel circle with its 
center M and the longitude ϑ at the point in time ta, 
when the Greenwich meridian points exactly to the 

sun. This inertial system I has to be discriminated 
from the autonomous system A, the attitude of 
which in space is not identified. Only point P is 
common to both systems. All points of system A are 
numerical, time-dependent values which have no 
true inertial meaning. But their relative coordinates 
at any point in time tx are correct like within a true 
inertial system. 
 
If one needs the autonomous coordinates as inertial 
coordinates, then additional information from 
vectorial sensors like plumb and north gyros is 
required. The transformation of autonomous quanti-
ties into inertial ones is a familiar mathematical 
exercise. A principal problem for this conversion 
may arise when the autonomous values are more 
accurate than the inertial vectors available. In those 
cases more complex conversion procedures (not 
discussed here) may help. 
 
Technical Realisation 
 
Fig. 12 gives an idea of how to realize technically 
the discussed positioning procedures.The block 
diagram shows the clock 1, the longitude processor 
2, the latitude processor 3, the altitude processor 4, 
the A/I converter 6, the data bank 5 with input 11 
and output 12, central control 7, control and display 
interface 8, and the data bus 10, which connects all 
subsystems with each other, and the bus control 9 
with the remote control input 13. The device works 
as follows (calibration assumed to have been done 
already). 

The data bank 5 supplies the three coordinate 
processors 2 (L), 3 (B) and 4 (h) with the specific 
fixed points in time tL tB and tH and the respective 
periodic time intervals TL, TB und TH. Clock 1 
supplies the three processors with the universal time 
tx resolved as required by the desired positioning 
resolution. Generally geodetic resolution require-
ments are much tougher than those for fast vehicles.    
 
The coordinate processors continuously  compute - 
based upon the data input - the three coordinates 
longitude, latitude and altitude with the refresh rate 
required by the system, and digitally delivers these 
values to the master system via the data bus and the 

Fig. 11  Difference between autonomous (A) and
 inertial (I) Meridian Determination
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output interface 12, and via the converter 6 to the 
control and display interface 8. 
 
Conclusions 
 
Summarizing, the new autonomous, time-based 
positioning approach described in this paper for 
measuring longitude, latitude and altitude combines 
the signal of a UT clock with very accurate data of 
fixed points in time and coordinates belonging to it. 
Positioning is reduced to the measurements of time 
differences.  
 
The difference between a given fixed point in time ta   
and the local clock time tx divides the respective 
period time T, and therefore the respecctive measure-
ment range, by the ratio  ∆tx /T, from which the 
coordinate to be measured can be derived very 
accurately. The procedure can be used for precise 3D 
positioning within microseconds independent of the 
attitude of the object to be positioned. 
 
The described autonomous positioning method offers 
a number of advantages compared to the state of art, 
in particular achievable maximum accuracy, full 
autonomy, high integrity depending mainly upon the 
local clock and software, and the suitability for 
application in any fixed and moving objects where a 
radio system like GPS can't be used.  Clock drift rates 
can be neutralized by selecting long time intervals, 
like those for one year or more instead of for a day. 
Calibration essentially is a test of the local clock and 
does not comprise special expertise. 
 
The described procedure can be supplemented by 
further functions, for instance autonomous deriva-
tion of velocity over ground of an airplane via 
several position points sequentially measured. In 
addition, local inertial vectors like north or lumb can 
be corrected and improved in accuracy. 
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