International Flight Inspection Symposium

Oklahoma City, OK USA June 2008

Glide Slope
Considerations to
Provide Support for
Aircraft Certification
for Steep Angle
Approaches

David Quinet
Aaron Wilson
Avionics Engineering Center
Ohio University

ILS Signal Requirements

- Localizer Signal:
 - Aligned with runway centerline
 - Meet Category I course roughness tolerances
- Glide Slope Signal
 - 5.5 to 8.65 degree path angle
 - Meet Category I path roughness down to an altitude of 344 feet

Location

- Previous Facility: Blythe removed when cooling tower built under approach
 - Aircraft decoupling due to updraft
- TMB: 09L
 - Known site performance
 - National FAA ILS test facility
 - Equipment and infrastructure [power, foundations, buildings] already exists
 - Established working relations with ATC

Summary of Aircraft Using Facility

Aircraft Type	Avionics	Path Angles Flown (Degrees)	Engineering Flight Dates
E-175	Honeywell	5.5	5/08-6/1/08
Cessna Mustang	Garmin	5.5	2/20-2/21/07
Gulfstream G-550	Honeywell	5.5	1/09/07
Gulfstream G -150	Honeywell	5.5	1/09/07
Cessna Encore+	Rockwell Collins	5.5	3/14/07
Cessna Excel	Rockwell Collins	5.5	3/31-4/01/08
Falcon 900	Honeywell	5.5, 6.65, 8.65	8/10-8/12/08;10/24- 26/07

Glide Slope Considerations to Provide Support for Aircraft Certification for Steep Angle Approaches

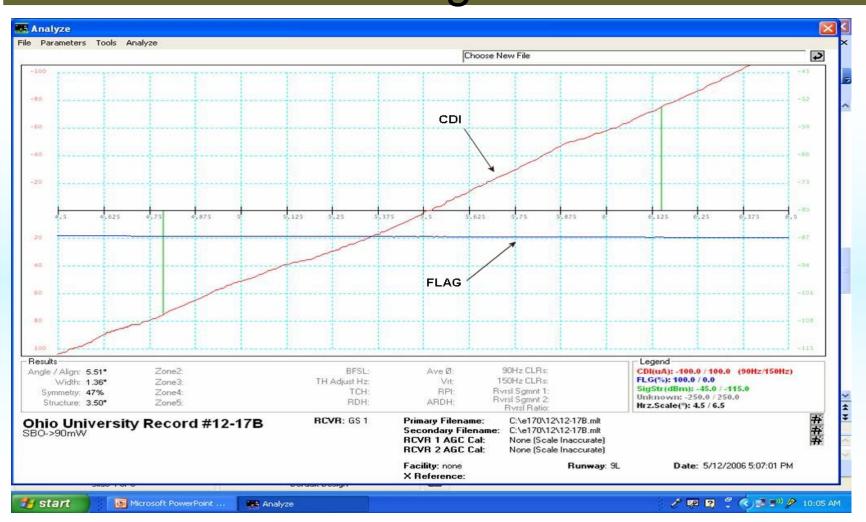
TMB Layout

Glide Slope Considerations to Provide Support for Aircraft Certification for Steep Angle Approaches

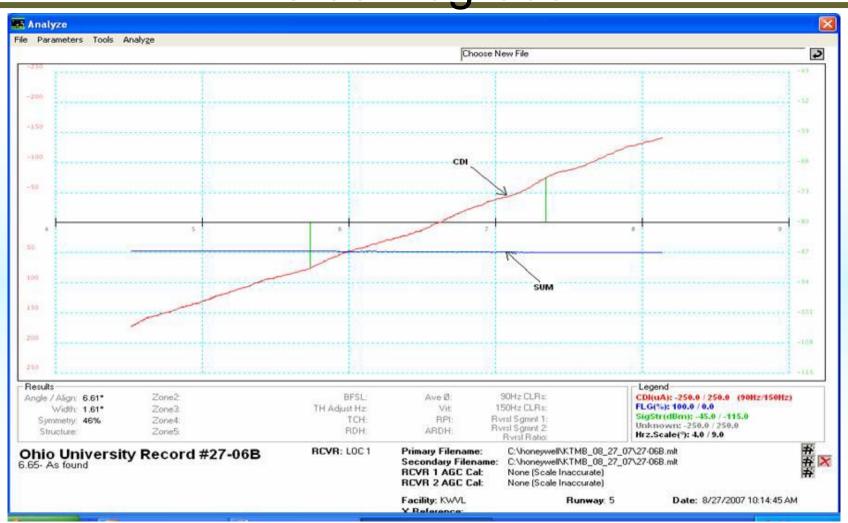
Summary of Ground Equipment

Devementor	Equipment		
Parameter	Localizer	Glide Slope	
Frequency (MHz)	109.7	333.2	
Antenna Type	Log Periodic Dipole	FAA 8971	
Array Type	8-Element Single-Frequency	Null Reference	
Transmitter	Mark 20	Mark 1F	
CSB Power (W)	15.0	4.0	
Standby Power	Batteries (6 hours minimum)	Batteries (6 hours minimum)	

Glide Slope Mast All-Angles

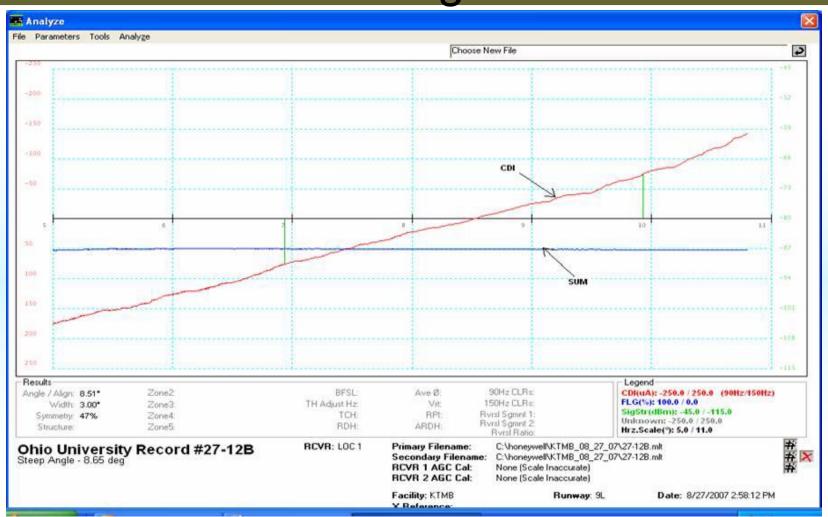

Glide Slope Considerations to Provide Support for Aircraft Certification for Steep Angle Approaches

Flight Results Summary


Parameter	Flight Measurement Results	Flight Inspection Tolerance	
Path Angle 5.5 Degrees 5/12/06 - 8/27/07			
Width (degrees)	1.36[1.41]	1.22 -1.42	
Symmetry (%)	47[47]	33 - 67	
Structure Angle (degrees)	3.50[3.41]	1.65 (minimum)	
Path Angle (degrees)	5.49[5.46]	5.4 - 5.6	
Path Angle 6.65 Degrees 8/27/07			
Width (degrees)	1.61	1.5-1.7	
Symmetry (%)	46	33 - 67	
Structure Angle (degrees)	4.3	2.0 (minimum)	
Path Angle (degrees)	6.61	6.6 - 6.7	
Path Angle 8.65 Degrees 8/27/07			
Width (degrees)	3.0	3.0-3.2	
Symmetry (%)	47	33 - 67	
Structure Angle (degrees)	4.8	2.6 (minimum)	
Path Angle (degrees)	8.51	8.5-8.8	

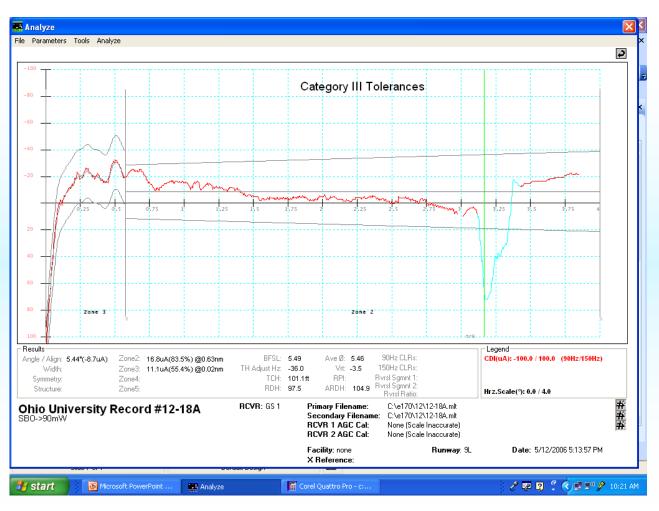
Glide Slope Considerations to Provide Support for Aircraft Certification for Steep Angle Approaches

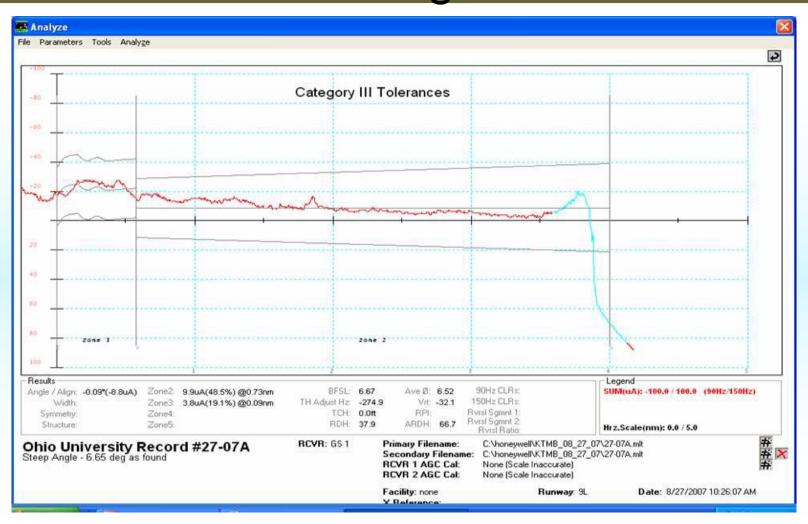
Proportional Guidance Sector 5.5 Degrees



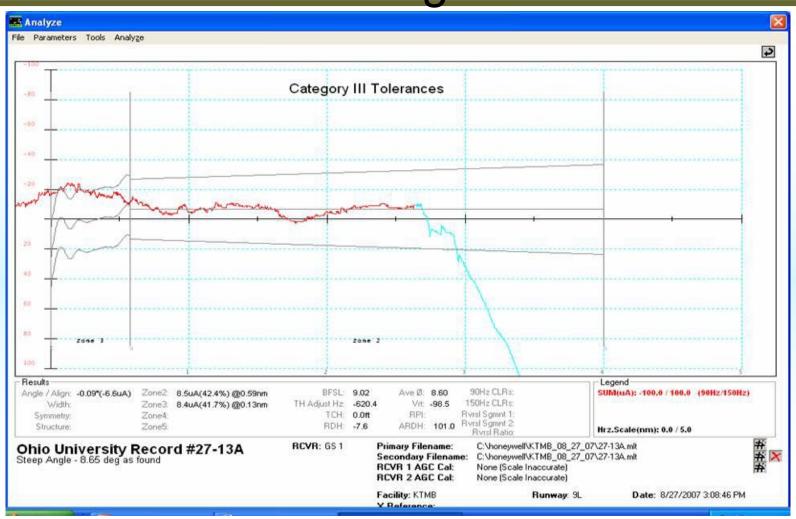
Proportional Guidance Sector 6.65 Degrees

Glide Slope Considerations to Provide Support for Aircraft Certification for Steep Angle Approaches

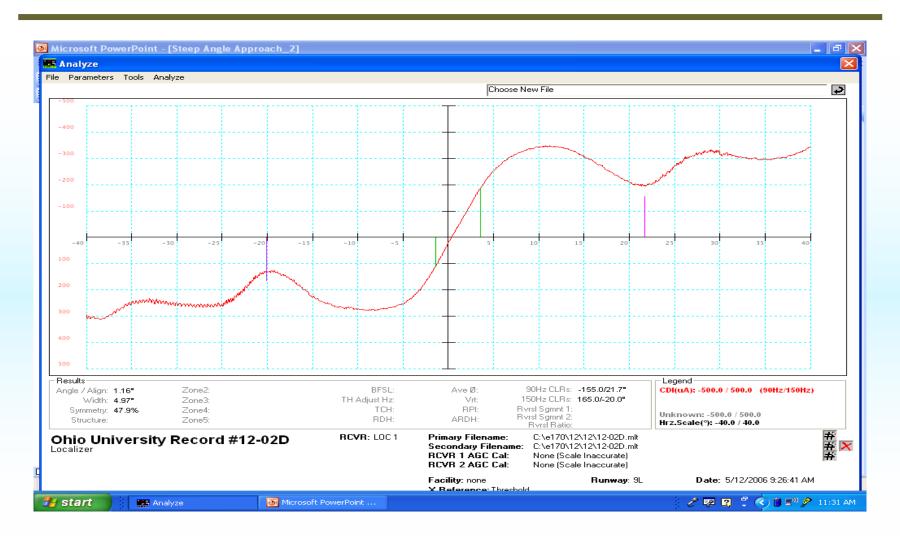

Proportional Guidance Sector 8.65 Degrees


Path Quality Summary

	Structure Roughness (µA / %	Structure Roughness (µA / % Tolerance / nmi)		
Category	ILS Zone 2	ILS Zone 3		
	Path Angle 5.5 Degrees 5/12/07	<u>.</u>		
	18.2/66.5/2.96	4.5/14.8/0.23		
III	16.8/82.5	11.1/59.4/0.20		
	Path Angle 5.5 Degrees 8/27/07			
I	23.3 / 77.5 / 4.0	5.8 / 15.9 / 0.18		
III	19.7 / 96.6 / 0.72	4.8 / 23.9 / 0.18		
	Path Angle 6.65 Degrees 8/27/07			
I	9.9 / 33 / 073	3.8 / 12.7 / 0.09		
III	9.9 / 48.5 / 0.73	3.8 / 19.1 / 0.09		
	Path Angle 8.65 degrees 8/27/07			
I	9.0 / 30.1 / 1.78	8.4 / 27.8 / 0.13		
III	8.5 / 42.4 / 0.59	8.4 / 41.7 / 0.13		

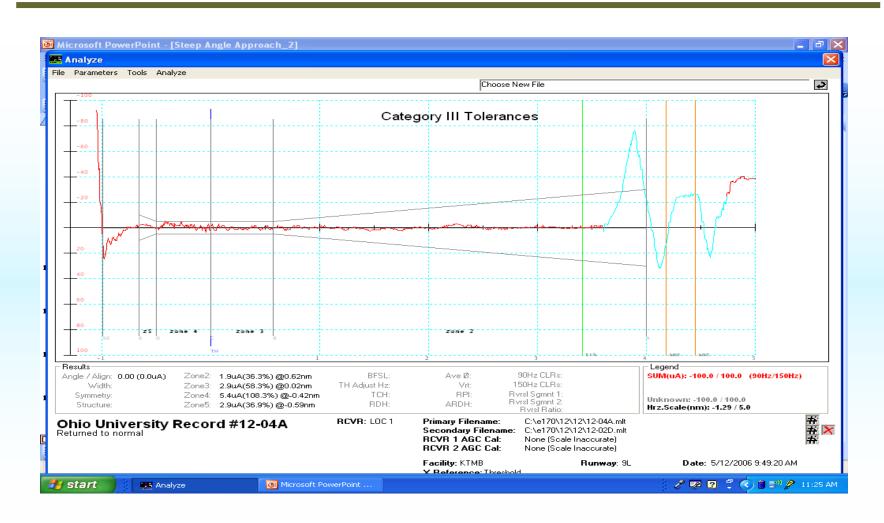

Structure Roughness 5.5 Degrees

Structure Roughness 6.65 Degrees


Structure Roughness 8.65 Degrees

Summary Localizer Performance

Parameter	Flight Measurement Results	Flight Inspection Tolerance
Width (degrees)	4.97	4.5 - 5.5
Symmetry (%)	48	45 - 55
Minimum Clearance 90 Hz (μA)	155	150 (minimum)
Minimum Clearance 150 Hz (μA)	165	150 (minimum)


Horizontal Sector

Localizer Performance

ILS Zone	Structure Roughness (μΑ / % / nmi)		
	Category I	Category III	
2	2.6 / 13.6 / 1.46	1.9 / 36.3 / 0.62	
3	2.1 / 13.8 / 0.76	3.9 / 52.3 / 0.02	
4	N/A	5.4 / 108.3 / 0.42	
5	N/A	2.9 / 36.9 / 0.59	

Course Quality

Equipment Consideration

Path Angle Change

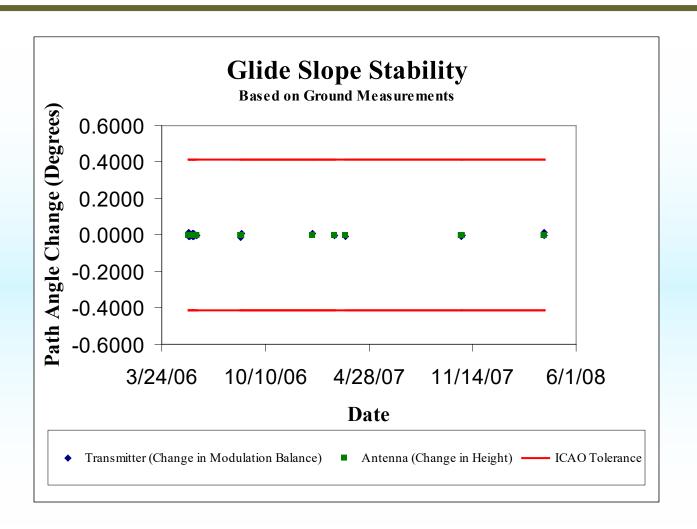
- CEGS/M-Array:
 - » Antenna heights
 - » UA- amplitude/phase change
 - » LA-amplitude/phase change
 - » Snow accumulation
- SBR:
 - » Antenna heights
 - » UA-amplitude change
 - » LA-amplitude change
 - » Snow accumulation
- EFGS:
 - » Pedestal displacement
 - » Phase change [F-R]

Null Reference

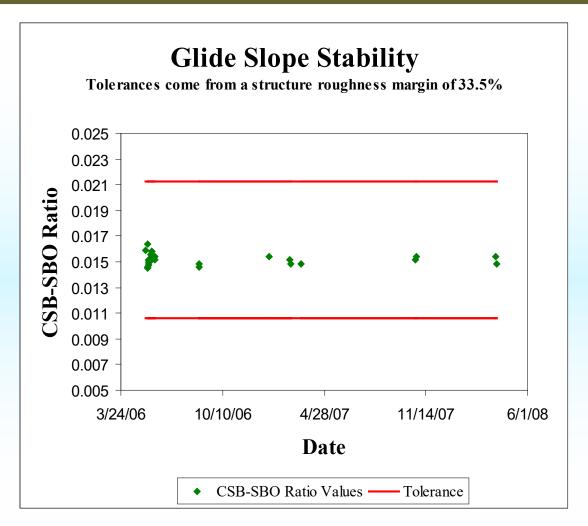
- Path Angle Change
 - Upper Antenna Height [0.01° per 1"]
 - Verified height with tape measure
 - Snow Accumulation

Path Roughness

- Aircraft on Taxiways
 - No taxiways near mast
- Terrain Modification
 - Visual inspection
- SBO CSB Power Ratio
 - Test equipment


8-Element Array

- Course Alignment Change
 - Phase change in antenna cable or DU
 - Verified with ground checks
 - Modulation Balance [0.001 DDM=> 2.3' at threshold]
 - Verified using calibrated external equipment
- Structure Roughness
 - Constant
 - No change to environment [buildings/parked aircraft] in front of array
 - » Visual inspection
 - No change in CSB/SBO power ratio
 - » Verified using thru-line elements


Signal Verification

- Based on ground measurements
 - Transmitter output power & modulation
 - In-line phase
 - GS antenna heights
 - Localizer ground checks (CL, width points)
 - Taken pre & post mission

Path Angle Stability

Structure Roughness

Glide Slope Considerations to Provide Support for Aircraft Certification for Steep Angle Approaches

Conclusions

 Localizer & Glide Slope remained within tolerances during all certification flights.

 Based on reference readings (antenna height); angle remained within 0.00015degrees.