International Flight Inspection Symposium Oklahoma City, OK USA June 2008

Identifying the Achilles' Heels of Instrument Flight Procedures

> Ivan Ferencz CAA Slovakia

Overview

- Introduction
- Procedure Lifecycle
- Design as a process
- Factors affecting the design
- Known issues
- Conclusions

Introduction

- Conventional Procedures
 - navigation systems are periodically flighttested and eventual defect of the procedure is discovered as a part of such tests
- RNAV Procedures
 - No direct link to particular navigation system
 - Data related
 - Risk mitigation effect of physical presence of signal in space is inhibited

Procedure Lifecycle (1)

Procedure Lifecycle (2)

Procedure Lifecycle (3)

When to perform Flight inspection:

After Design
 Flight Inspection Report is used
 as one of inputs of Validation

•During Validation Flight Inspection is used as one of validation tools

•Before Publication Flight inspection is used to obtain approval of AIP Amendment

•At the user level Flight inspection is used to confirm usability of procedure -standard FMS Database -customized FMS Database

Identifying the Achilles' Heels of Instrument Flight Procedures

IFIS 2008, OKC

Design as a Process (1)

Design as a Process (2)

Design as a Process (3)

Factors affecting the Design

Known Issues (1)

- Height above THR
 15.0m versus RDH
- Length of Segments
 - Minimum Stabilisation Distance
 - Optimum length T-Bar (Y-Bar)
- Descent and Climb Gradients
 - Boundaries of the design
 - Application of the Earth curvature
 - FAF location

Known Issues (2)

- Segments Overlap
 - Interfaces between segments
- FAF in precision procedure
 FAP versus FAF
- GP verification point
 - Missing data
 - Distinction from the Stepdown Fix

Known Issues (3)

Stepdown Fix Altitude

Known Issues (4)

- NAVAIDs Performance
 - ILS Coverage
 - 17/25NM versus 10/18NM, GP coverage
 - Early phases of Departures
- Minimum Equipment List
 - Intersections
 - Number of waypoints
- Slow Aircraft
 - Track discontinuity after turns

Known Issues (5)

- Missed Approach Text
 - More than one missed approach in procedure
- Speed restrictions
 - Speed limitations below PANS-Ops Margins
 - Lower speed / higher bank combination
- ARINC 424 Coding
 - Coding Advice versus Real Database

Known Issues (6)

- Departure End of Runway
 - End of Runway used instead of End of Clearway
- Environmental Aspects
 - Procedure might generates noise problem
- Magnetic Variation
 - Magnetic Variation is not accommodated
 - Rounding to the nearest whole degree

Conclusions (1)

- Huge amount of safety sensitive work lies on shoulders of sole person - instrument procedure designer
- flight inspection of procedures represents a barrier, which mitigates risks associated with the instrument procedures design
- Effectiveness of such risk mitigation strongly depends on skills of flight inspectors

Conclusions (2)

 Having in mind continuous transformation of flight inspection from flight inspection of systems to flight inspection of procedures, flight inspectors should become experts in instrument procedures design

