WAAS/LPV Flight Inspection

The Importance of Database Integrity and Standardization

Presented to: IFIS 2008

By: Gary A. Flynn, P.E.

Organization: Federal Aviation Administration, Aviation System Standards, USA

Date: June 24, 2008

Topics

- Introduction Timeline & Equipage
- Background Technical Audit
- Challenge 1: Vertical Guidance and TCH
- Challenge 2: Database Integrity & Standardization

Timeline

- 1999: AVN begins WAAS R&D work using experimental equipment
- 2004: AVN has established procedures for inspecting WAAS/LPV approaches
- 2004: AVN's WAAS/LPV inspection program is short-lived, Threshold Crossing Height (TCH) values are unreasonable
- 2005: AVN begins in-depth technical audit of WAAS/LPV inspection program

Equipage

- Six Lear 60 Aircraft
- Collins Multi-Mode Receiver (MMR) with WAAS
- Differential GPS (auxiliary truth system)
- Upgraded Flight Management System (Universal)
- Flight Inspection Software Changes

MMR Installation in Lear 60

Lear 60 Flight Inspection Workstation

Engineering Lab – Test Station

Background

- Experience Gained Analyzing F.I. Data for NASA MSBLS
 - Verified both the sample-by-sample results and analytical results
 - Extremely complex effort (position transformations, extrapolations, etc.)

- Approached by WAAS/LPV F.I. Technicians
 - Unrealistic Threshold Crossing Heights (TCH)
 - Preliminary discussions raised concerns

Background

Preliminary Review Raised Issues

- TCH not included in pass/fail criteria
- Method for calculating TCH not well documented
- TCH results inconsistent & unreasonable
- Decision
 - Convinced AVN management to halt WAAS/LPV inspection until issues resolved
 - Highest priority given to resolving issues
 - Concentrated on vertical profile, not so much on lateral

- Why Check WAAS Guidance?
 - Unlikely WAAS signal would be a problem
 - WAAS guidance Threshold Crossing Height (TCH) is an excellent indicator of accuracy and integrity of the procedure and supporting data
- TCH Simple Definition
 - Vertical distance from runway surface to WAAS/LPV guidance path at threshold

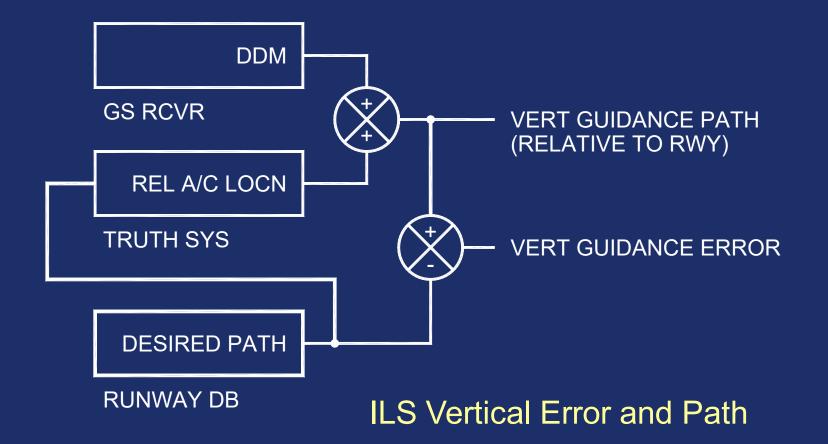
• ILS

- Relatively immune to survey errors

• WAAS/LPV

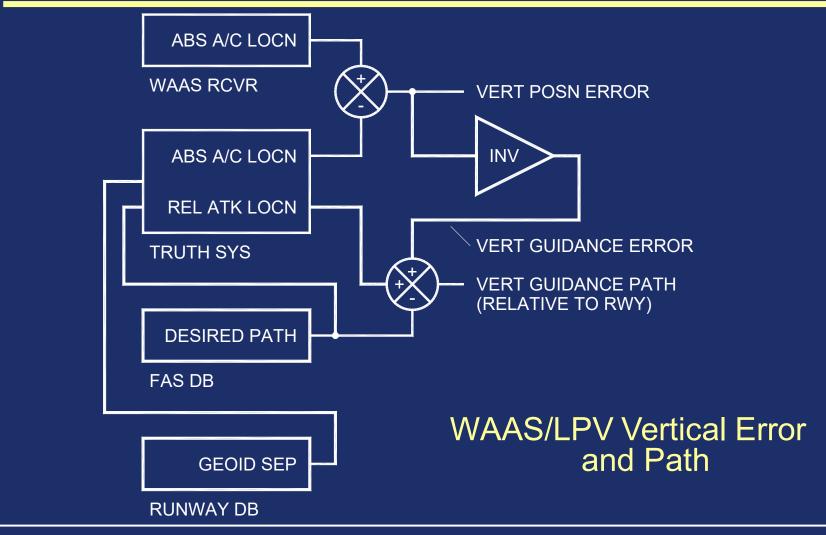
- Complex solution
- Runway survey data*
- Airborne database: Final Approach Segment (FAS) data block definition*
- WAAS ground station surveys*

* Has associated reference datum

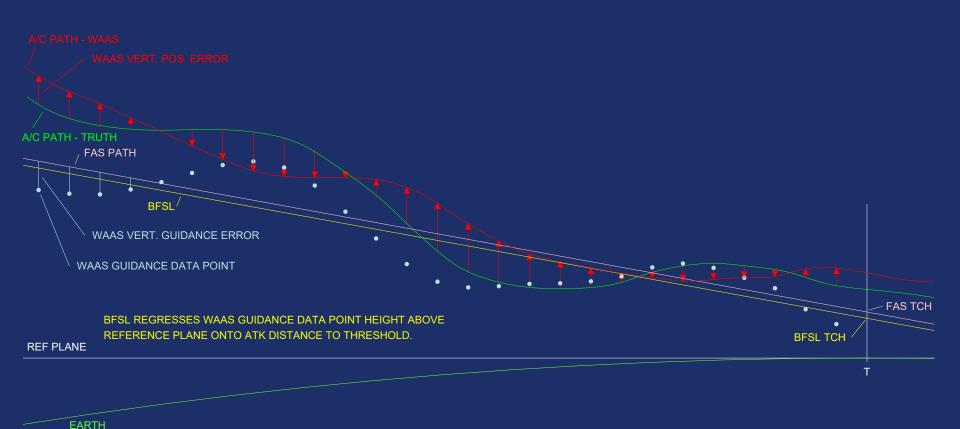

Methodology

- Create WAAS/LPV vertical guidance and check in a manner similar to ILS glideslope
- Just as for ILS, <u>assume all error is due to</u> <u>WAAS/LPV solution</u>, none due to truth system
- Use Final Approach Segment (FAS) data block specification to define desired path (see FAS Build screen shot)

FAS Build - KOKC_35L.bin			
<u>File E</u> dit <u>T</u> ools <u>H</u> elp			
FAS Editor SBAS ID 0 Airport ID KOKC Runway 35L Operation Straight In	GP Angle 3.00 deg Crs Width 106.75 m TCH 55.0 feet HAL 40.0 m	FAS Hexadecimal Byte Hex 1 00 2 03 3 0B 4 0F 5 0B 6 E3 7 00	FAS Build
Performance LPV Route Route Ref. Path Sel. 0 Ref. Path ID W35A	VAL 50.0 m	8 00 9 01 10 35 11 33 12 17 13 28 14 DB	Screer Shot
LTP Lat. N 35°22'44.5000" LTP Lon. W 97°36'20.5100"	FPAP Offset 0 m FPAP Lat. N 0°01'36.9200" FPAP Lon. W 0°00'00.0900"	15 2E 16 OF 17 C4 💌	
LTP Ellip. Ht. 358.3 m	🔽 Delta FPAP	CRC Code (Hex) 01 14 F9 7E	


WAAS Guidance Error vs. Position Error

- WAAS guidance error is same magnitude as position error but opposite in polarity
- Sample below assumes that WAAS is reporting altitude 10 feet below actual

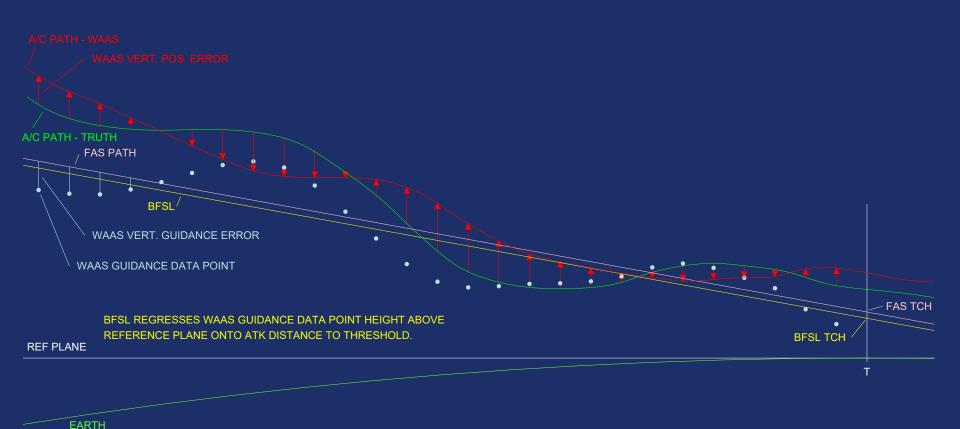

Case: WAAS Vertical Position Error vs. Guidance Error

Actual Aircraft Position	On path
WAAS Reported Position	10 ft below path
WAAS Guidance	10 ft above path

WAAS Vertical Guidance Data Points

Compensating for ATK Error

- For a 3° glideslope, a 20-foot ATK error will produce 1 foot of vertical error
- Two methods for compensation are described in IFIS paper



Best Fit Straight Line

- Linear regression of vertical guidance path from FAF to Threshold
- Produces GPA and TCH
- Using multiple data points reduces anomalous results
- GPA will typically match FAS

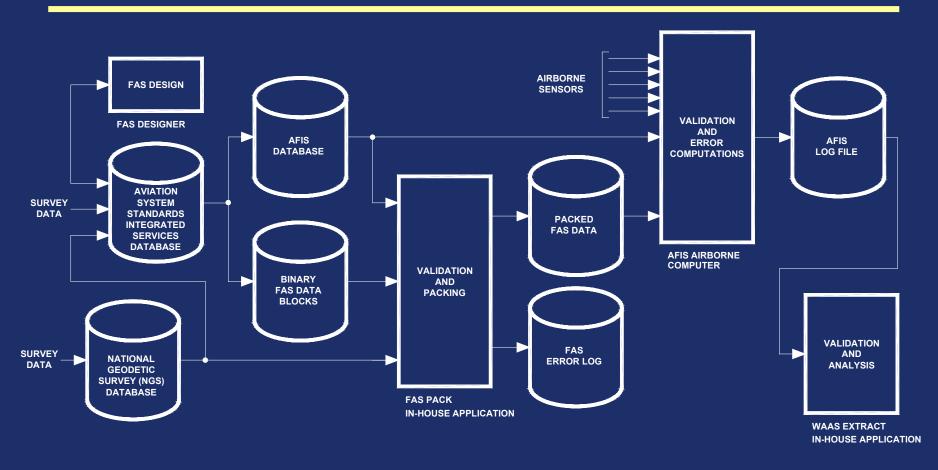
WAAS Vertical Guidance Data Points

The End

... of Part 1

Influence of Data

- ILS local geometry only
- WAAS/LPV Affected by:
 - Runway survey data
 - FAS data block definition


- GPS/WAAS signal (WAAS Reference Station surveys)
- Must ensure data is accurate
- Must ensure all relate to same geodetic datum

Engineering Tools

- FAS Pack: Checks FAS data block files before flight (also used to package multiple data blocks into single file)
- WAAS Extract: Analyzes AFIS log files & validates AFIS results

Data Flow -WAAS LPV Flight Inspection

Errors Discovered

- FAS data block design or data entry
- Survey data
- Transfer of survey data into database
- Latent errors associated with runway database
- Runway database filter algorithm
- Differences in geodetic datum


FPAP Offset 3018 ft LTP Lat. N 44°07'58.7240" FPAP Lat. N 44°06'29.6200" LTP Lon. W 123°12'09.7110" FPAP Lon. W 123°12'08.3900" LTP Ellip. Ht. 650.9 ft ★ □ Delta FPAP ✓ Feet	11 31 12 17 13 08 14 98 15 F0 16 12 17 22			
Block I 116 of 365 Close Expand CRC Code Input F9 41 37 4E hex Calculated F9 41 37 4E hex	18 8C 19 20 20 CB 21 C0 22 1B ▼			
AFIS Database Pending				
Thid Lat. N 44°07'58.7200" Rwy Hdg 179.39 deg				
Thid Lon. W 123°12'09.7100" Rwy Length 6000 ft Fix 2 Dist.	ft			
Thid MSL 363.4 ft Rwy End MSL 373.6 ft Fix 2 MSL	ft			
Thid Ell Ht ft E-M: FAS/DB/NGS 287.5 -75.9 ft				

363 Ft Vertical Error at Threshold (FAS Pack Tool)

"Four-Foot Offset"

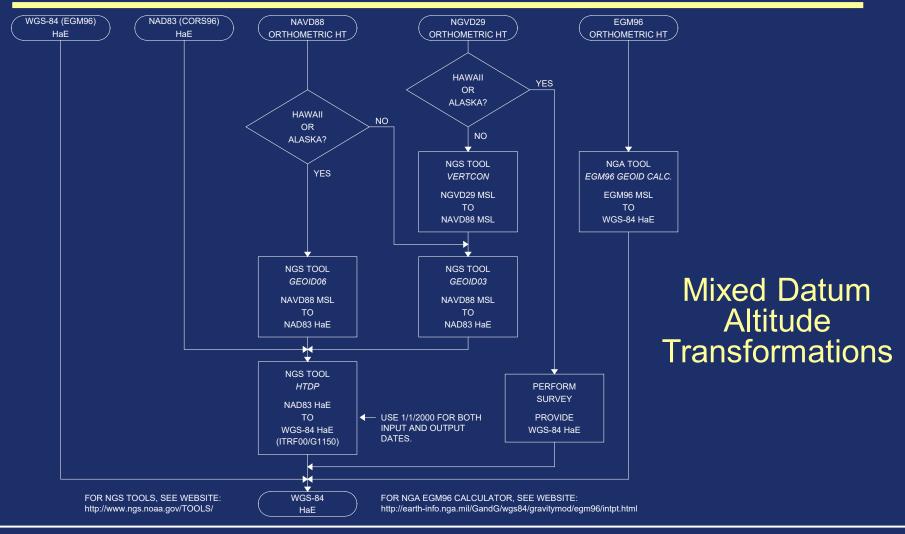
- Persistent TCH bias during technical audit
- Averaged about 4 feet
- Changed somewhat with geographic location
- Many tests performed to identify source:
 - Multiple truth systems
 - Post-flight analysis
 - Static aircraft and laboratory tests
 - Use of multiple WAAS receivers

- "Four-Foot Offset" (Continued)
 - Stumbled upon answer (phone conversation with NGS)
 - North American Datum 1983 (NAD83) vs. World Geodetic Survey 1984 (WGS-84)
 - Initially equivalent
 - WGS-84 datum has been shifted about 2 meters
 - RTCA DO-229C specifies WGS-84 for FAS data
 - Continue to use NAD83 ellipsoidal height when creating FAS data blocks

Ellipsoidal Height Data References

Runway Survey	Typically NAD83
FAS Data Block	Same as Runway
WAAS Guidance (Reference Stations)	WGS-84

NAD83 vs. WGS-84 Vertical Differences


Los Angeles, California	2.3 ft
Oklahoma City, Oklahoma	3.7 ft
Daytona Beach, Florida	5.0 ft

- Other Survey References
 - Many WAAS/LPV approaches based upon legacy, orthometric (MSL) coordinate systems
 - North America Vertical Datum 1988 (NAVD88)
 - National Geodetic Vertical Datum 1929 (NGVD29)
 - Tools provided by NGS and NGA convert orthometric height (MSL) to ellipsoidal height (HaE)

MSL: Mean Sea Level (Orthometric Height) HaE: Height above Ellipsoid (Ellipsoidal Height)

Conclusions

Conclusions

- Imperative to establish exactly what is being checked (and pass/fail criteria)
- BFSL TCH provides a good figure of merit for the WAAS/LPV approach
- Database accuracy and standardization are larger contributors to WAAS/LPV approach problems than the actual signal in space
- Due to the susceptibility of WAAS/LPV to survey errors and the multiplicity of opportunities for errors to enter the development process, it is imperative that an end-to-end check be performed

